MEET

Simulator
Version 1.2.1

A Step by Step Guide

By Mostafa Bazzaz

Embedded Systems Research Lab
Sharif University of Technology

Change Log

1.2.1
- Tutorial updated
1.2
- Scripts are now compatible with Ubuntu’s ARM cross compiler
- Build script now checks for the existence of the compiler
- Some performance improvement tweaks
1.1
- Step by step guide added
- Two helper scripts added for simpler compiling and simulating
1.0

- Initial release

This document was last updated on May 22, 2019.

MEET Simulator Table of Contents

Contents

S) { oo [F L1 AT o ISP VST PRO PP PSP 2
I O Y o Yo TU 1Y/ |3 = TP P PP PP 2
1.2 Hardware Platform ... ettt e e e 3
£ o =T o =Y LU =T g =T o 4
I 1 1) = 11 o =28 1 =3 PSRRI 5
3.1, BUIIING IMEET ..ttt sttt ettt st et e b e b e s b st e st e e n e e b e e sneesmeesmees 5
3.2, INStalling ARM COMPIIET oot et e e e et e e e e sta e e e sebaeeesanbeeeeesnseeeeeans 6
A, USING IMEET i a e e e e e e e 7
AL OPHONS e 7

4.2. 1211 = T T T o 1) o oL 7

MEET Simulator Introduction

1. Introduction

1.1. About MEET

MEET (Microcontroller Energy Estimation Tool) is an energy profiler tool for AT91SAM7x256
microcontroller developed at embedded systems research laboratory of Sharif University of Technology,

Iran (see http://esrlab.ce.sharif.ir/). The energy model used in MEET is the model presented in the

following paper:

Mostafa Bazzaz, Mohammad Salehi, and Alireza Ejlali. "An accurate instruction-level
energy estimation model and tool for embedded systems," |IEEE Transactions on
Instrumentation and Measurement, Vol. 62, No. 7, 2013, pp 1927-1934.

This model estimates the energy consumption of CPU, SRAM, Flash memory, and memory controller.
However, it does not estimate the energy consumption of other peripherals such as RS232. Therefore,
MEET cannot estimate the energy consumption of printf statements or other similar functions.

The program is based on Sim-profile which is a part of SimpleScalar simulator suite (see
http://www.simplescalar.com). MEET receives an ARM7TDMI compatible binary image and simulates

the program at instruction level. Working with MEET is very similar to Sim-profile and anyone with
enough knowledge of building and running SimpleScalar simulators should be able to run MEET. To
simplify the process of compiling and running applications, three shell scripts are prepared: build.sh,
extractor.sh, and run.sh. build.sh is a wrapper script for calling Ubuntu’s ARM cross compiler with
appropriate options. extractor.sh is used for analyzing the application binary and finding the address of
the entry point of the application and run.sh is a wrapper for calling MEET with appropriate options.

As mentioned before, MEET does not estimate the energy consumption of RS232. Therefore, the
simulated program cannot include any type of console output statements. The simplest way to remove
all printf statements is to add a compiler directive to change the definition of printf to nothing (i.e., after
include statements add #define printf this should be repeated for all console-related functions such as
puts, putc, fprintf, etc).

MEET inherits the profiling ability of Sim-profile which can be combined with the energy estimation
capability to form an energy profiler tool. Sim-profile can profile an application against a given metric
which can be the variable holding the total energy consumption of the application. The output will be
the energy consumption per instruction which can help in identifying the hotspots of the application.

It must be noted that MEET also inherits some of limitations of ARM version of SimpleScalar as well.
Certain instructions of ARM ISA are not implemented in the ARM version of SimpleScalar such as SWP,
MSR, MRS, and SWI. As a result, MEET cannot simulate applications that rely on these instructions such
as Linux kernel.

http://www.sharif.ir/web/en
http://esrlab.ce.sharif.ir/
http://www.simplescalar.com/

MEET Simulator Introduction

1.2. Hardware Platform

The hardware platform simulated by MEET is an AT91SAM7X256 microcontroller which is equipped with
64 KB of SRAM, 256 KB of Flash, and an ARM7TDMI processor. The internal structure of this
microcontroller is shown in Figure 1. The energy estimation model includes the energy consumption of
the processor core, SRAM, and Flash. The Flash memory is used for storing the code and read-only data
while the SRAM is used as the runtime data memory.

§ ARM7TDMI
USART < g Processor
S X
> CAN » SRAM
SPI |«
A 4 A 4
_| Peripheral | ¢ | Memory |, Flash
ADC | Bridge controller
— 7y *
!
USB L > Ethernet ROM

Figure 1 Internal structure of AT91SAM7X256

MEET distinguishes between Flash memory access and SRAM memory access by the target address of
load/store instructions. The Flash memory is mapped to 0x100000 and SRAM memory is mapped to
0x200000. Therefore, in order to obtain accurate results, you must change the linker script according to
this memory configuration. There is a sample linker script inside the package named at91.ld.

MEET Simulator System requirement _

2. System requirement

The system requirements of MEET are very similar to SimpleScalar. MEET needs the flex package and it
can be compiled using GCC compiler in Linux environment. Also, the provided scripts are based on Bash
which must be selected as the user’s shell interpreter.

Version 1.2.1 has been tested using the following configurations but it should be easy to build it using
other versions as well.

e TLinux Mint 18 ‘Sarah’ 64 bit + GCC 5.4.1

e TLinux Mint 17.1 ‘Rebecca’ 64 bit + GCC 4.8.4
e Linux Mint 17.1 ‘Rebecca’ 64 bit + GCC 4.4.7
e Linux Mint 17.2 ‘Rafaela’ 64 bit + GCC 4.8.4

MEET Simulator Installing MEET

3. Installing MEET

Install the essential packages for compiling MEET.
» sudo apt-get install build-essential flex

Make sure that GCC is installed correctly and it is included in the PATH variable.
» gcc -v

Make sure that bash is selected as the user’s shell interpreter by executing the following command.
» 1s -1 /bin/sh

The following result shows that dash is selected instead of bash.

@bz-virtual-machine -/ME
lrwxrwxrwx 1 root root 4 May 22 21:80 /bin/sh -> dash

bz@gbz-virtual-machine ~/M 3
T rwxrwx rwx 22 22:46 /bin/sh -> bash

3.1. Building MEET

Download MEET-1.2.1.zip and extract the downloaded package to a folder.
» unzip MEET-1.2.1.zip

From here on in, we assume the folder is placed in the home folder and we refer to this new created
folder as [MEETfolder]. Change the current directory to [MEETfolder].

» cd $HOME/MEET
Choose ARM as target configuration.
» make config-arm
Build the package.
» make
On successful build, the last line of the output should be “my work is done here...”.
Validate the program by running the sample application.

» sh validateInstall.sh

MEET Simulator Installing MEET _

After executing the above command, MEET simulates a sample application and generates the simulation
results. Total energy consumption of the application is listed as “sim_total_energy 617785.6875 #
total energy consumption (nJ)”. The whole simulation should take less than 5 seconds.

3.2. Installing ARM compiler

You can use Ubuntu’s default arm compiler, build your own version of GCC cross compiler, or download
one of the prebuild versions from the internet. In this section, we use Ubuntu’s default arm compiler in
package gcc-arm-none-eabi. It can be installed using the following command in Ubuntu:

» sudo apt-get install gcc-arm-none-eabi
Now, open a console and change your current directory to [MEETfolder].
» c<cd SHOME/MEET
Make sure ARM compiler is included in the PATH.
» arm-none-eabi-gcc -v
To test your toolchain, compile the sample application inside tests folder.
> sh build.sh tests/quicksort.c -o tests/quicksort -02 -DNO_PRINT

build.sh wrapper calls the cross compiler with mandatory options. The user must provide input(s),
output and any other options required.

After compiling the application, simulate the program using MEET.
» sh run.sh tests/quicksort main

run.sh wrapper takes two parameters: full path of executable binary and name of the starting point of
the measurement. The latter enables the developer to start the energy estimation process from a
specific address of the program to exclude the initialization phase of the application.

Total energy consumption of the application is reported as sim_total_energy=617785.6875 nJ.

MEET Simulator Using MEET

4. Using MEET

Assuming that you have installed the required cross compiler; you can build your application using
build.sh and simulate it using run.sh.

Make sure your application does not contain any print instruction (e.g., add #define printf() after your
include statements. See sample applications inside tests folder).

Change your current folder to [MEETfolder] (in our example it was SHOME/MEET). This step is only
required if you want to use build.sh and run.sh.

» cd $HOME/MEET
Compile your source code (e.g, SHOME/source/quicksort.c) using build.sh script
» sh build.sh S$HOME/source/quicksort.c SHOME/source/quicksort

Simulate the program (assuming we want to estimate the energy consumption of whole program
including the initialization steps).

» sh run.sh S$HOME/source/quicksort main

4.1. Options

Executing MEET without any argument prints all possible options of the program. Most options are
similar to that of Sim-profile. There are three new options which are listed in Table I. If you are using
run.sh, you do not need to use these options directly.

Table | - New options of MEET

Option Purpose \
Start the execution from the specific address. If this option is not specified,

RUEEIES ELLIEY the starting address of program from the binary image is used instead.

-finish:pc [address] End the execution after reaching the specific address.

Start the estimation process after reaching the specified address. If this option
-initial:meas [address] | is not specified, the estimation process will start from the beginning of the
application.

4.2. Simulation statistics

Same as options, the final statistics of simulation are similar to Sim-profile with the exception of 7 new
values. These are listed in Table II.

MEET Simulator using MEET IEND

Table Il - New simulation statistics

Option Purpose \
inst_count_after_meas | Total number of instructions executed after starting of estimation procedure.
sim_num_flash_loads Total number of Flash read memory accesses
sim_num_sram_loads Total number of SRAM read memory accesses
sim_total_energy Total energy consumption of the simulation (nJ)

instruction_bus_activity | Total number of bit flips in instruction bus

instruction_bus_weight | Total number of ‘1’ bits in instruction bus

regbank_activity Total number of bit flip in register bank

	1. Introduction
	1.1. About MEET
	1.2. Hardware Platform

	2. System requirement
	3. Installing MEET
	3.1. Building MEET
	3.2. Installing ARM compiler

	4. Using MEET
	4.1. Options
	4.2. Simulation statistics

